

CLOUD-NATIVE ROADSHOW

OpenShift Operations and Container Native Storage Test Drive

http://red.ht/openshift-ops-testdrive

Get hands on!

Agenda

- Introductions
- Linux Containers (review)
- OpenShift Architecture
- Container Native Storage / Gluster Architecture
- Labs!

LINUX CONTAINERS

WHAT ARE CONTAINERS?

It Depends Who You Ask

INFRASTRUCTURE

APPLICATIONS

- Application processes on a shared kernel
- Simpler, lighter, and denser than VMs
- Portable across different environments

- Package apps with all dependencies
- Deploy to any environment in seconds
- Easily accessed and shared

VIRTUAL MACHINES AND CONTAINERS

VIRTUAL MACHINES

virtual machines are isolated apps are not

CONTAINERS

containers are isolated so are the apps

VIRTUAL MACHINES AND CONTAINERS

- ➡ VM Isolation
- Complete OS
- Static Compute
- Static Memory
- High Resource Usage

- Container Isolation
- Shared Kernel
- Burstable Compute
- Burstable Memory
- Low Resource Usage

VIRTUAL MACHINES AND CONTAINERS

Clear ownership boundary between Dev and IT Ops drives DevOps adoption and fosters agility

Optimized for stability
Optimized for agility

APPLICATION PORTABILITY WITH VM

Virtual machines are NOT portable across hypervisor and do NOT provide portable packaging for applications

APPLICATION PORTABILITY WITH CONTAINERS

RHEL Containers + RHEL Host = Guaranteed Portability
Across Any Infrastructure

RAPID SECURITY PATCHING USING CONTAINER IMAGE LAYERING

Example Container Image

Container Image Layers

A lightweight, OCI-compliant container runtime

Optimized for Kubernetes Any OCI-compliant container from any OCI registry (including docker)

Improve Security and Performance at scale

Available in OpenShift Online (soon)

Tech Preview in OCP 3.7, GA in OCP 3.8

OPENSHIFT ARCHITECTURE

YOUR CHOICE OF INFRASTRUCTURE

NODES RHEL INSTANCES WHERE APPS RUN

APPS RUN IN CONTAINERS

PODS ARE THE UNIT OF ORCHESTRATION

MASTERS ARE THE CONTROL PLANE

API AND AUTHENTICATION

DESIRED AND CURRENT STATE

INTEGRATED CONTAINER REGISTRY

ORCHESTRATION AND SCHEDULING

PLACEMENT BY POLICY

AUTOSCALING PODS

SERVICE DISCOVERY

PERSISTENT DATA IN CONTAINERS

ROUTING AND LOAD-BALANCING

ACCESS VIA WEB, CLI, IDE AND API

CONTAINER NATIVE STORAGE

GLUSTERFS - DISTRIBUTED FILE STORAGE

Single, Global namespace

- Deploys on Red Hat-supported servers and underlying storage: DAS, JBOD
- Scale-out linearly
- Replicate synchronously and asynchronous

FEDERATING LOCAL STORAGE

LABS!

https://github.com/openshift/openshift-cns-testdrive